Treatment Patterns, Tolerance, and Clinical Response of Chronic Phase Chronic Myeloid Leukemia (CML-CP) Patients (Including Those Harboring the T315I Mutation) Experiencing Multiple Tyrosine Kinase Inhibitor Failure: A Multi-Center Retrospective Chart Review Analysis

Franck Emmanuel Nicolini, MD, PhD1,2; Françoise Huguet, MD2,3; Lynn Huynh, DrPH, MPH4; Churong Xu, MHS4; Christophe Bouvier, MS1,2; Aurore Yocolly, MPH, MS, MBA5; Gabriel Etienne, MD, PhD2,6

1Centre Léon Bérard, Lyon, France; 2Fi-LMC Group, Lyon, France; 3Institut Universitaire du Cancer, CHU, Toulouse, France; 4Analysis Group, Inc., Boston, MA, USA; 5Novartis Services, Inc., East Hanover, NJ, USA; 6Institut Bergonié, Bordeaux, France;

Abstract #4343 – Poster Presentation
Background and Objectives

Background

• Adenosine triphosphate-competitive tyrosine kinase inhibitors (TKIs) are an effective treatment for chronic phase chronic myeloid leukemia (CML-CP)\(^1,2\)

• However, a substantial proportion of CP-CML patients treated with TKIs eventually switch to an alternative TKI after developing intolerance or resistance, representing a major clinical burden\(^3,4\)

• The presence of the *BCR::ABL1* T315I mutation, which is associated with worse prognosis, further complicates the clinical management of patients with CML-CP\(^5\)

Objectives

• To describe real-world treatment patterns, clinical outcomes, and adverse events (AEs) in French CML-CP patients receiving 3 or more lines of therapy (3L+) and those with the *BCR::ABL1* T315I mutation
Methods

• Study design (Figure 1)

• A retrospective chart review study was conducted at 3 large clinical institutions for CML in France:
 • Centre Léon Bérard (Lyon)
 • Hématologie Institut Bergonié (Bordeaux)
 • Institut Universitaire du Cancer Toulouse (Toulouse)

• De-identified demographic and clinical data for adult patients diagnosed with CML-CP and treated in 3L+ or harboring the T315I mutation between 2006 and 2021 were abstracted from medical charts using an electronic case report form
Methods

- **Study population**
 - Inclusion criteria:
 - Age ≥ 18 years at CML-CP diagnosis
 - **For 3L CML patients**: initiated 3L therapy after failing 2 prior therapies (allogeneic stem cell transplantation, bosutinib, dasatinib, imatinib, nilotinib, or ponatinib) between 2006 and 2021
 - **For T315I mutation patients**: evidence of T315I mutation and treatment with TKI or allogeneic stem cell transplantation
 - Non-opposition of patients recruited for participation in the study
 - Exclusion criteria:
 - History of other active malignancy within 3 years prior to CML-CP diagnosis
 - Received anti-cancer therapies for any other malignancies prior to time of 3L therapy initiation or at the time of treatment initiation after identification of T315I mutation
 - Enrollment in a clinical trial at the time of 3L therapy initiation or at the time of treatment initiation after identification of T315I mutation

- **Statistical analysis**
 - Descriptive statistics were used to summarize patient characteristics, treatment patterns, clinical outcomes, and AEs
 - Kaplan–Meier analysis was performed to determine the cumulative incidence of patients with a major molecular response (MMR [0.01% < \(BCR::ABL \leq 0.1\% \)]) or deep molecular response (MR4.0 or MR4.5; standardized and expressed on the international scale [IS])
 - Factors associated with overall survival (OS) were evaluated by multivariate Cox regression analysis
Results

Table 1. Demographic characteristics of patients with 3L+

<table>
<thead>
<tr>
<th>Demographic Characteristic</th>
<th>N = 157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) at CML-CP diagnosis, mean ± SD [median]</td>
<td>52.8 ± 15.7 [55.7]</td>
</tr>
<tr>
<td>Age (years) at index date, mean ± SD [median]</td>
<td>59.3 ± 15.6 [62.1]</td>
</tr>
<tr>
<td>Year of CML-CP diagnosis, n (%)</td>
<td></td>
</tr>
<tr>
<td>Before 2010</td>
<td>88 (56.1)</td>
</tr>
<tr>
<td>On or after 2010</td>
<td>69 (43.9)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>88 (56.1)</td>
</tr>
<tr>
<td>Female</td>
<td>69 (43.9)</td>
</tr>
<tr>
<td>Medical center, n (%)</td>
<td></td>
</tr>
<tr>
<td>Centre Léon Bérard, Lyon</td>
<td>65 (41.4)</td>
</tr>
<tr>
<td>Hématologie Institut Bergonié, Bordeaux</td>
<td>61 (38.9)</td>
</tr>
<tr>
<td>Institut Universitaire du Cancer Toulouse, Toulouse</td>
<td>31 (19.7)</td>
</tr>
<tr>
<td>Length of follow-up (month), mean ± SD [median]</td>
<td>66.9 ± 43.3 [59.3]</td>
</tr>
</tbody>
</table>

ABBREVIATIONS: 3L+, three or more lines of therapy; CML-CP, chronic myeloid leukemia in chronic phase.

NOTE: Follow-up time was defined as the time from the index date to the date of death from any cause or date of last follow-up.

- Risk scores at CML-CP diagnosis:
 - Sokal: 22% low, 34% intermediate, 29% high, 15% unknown
 - EUTOS long-term survival (ELTS): 40% low, 25% intermediate, 11% high, 24% unknown/not assessed
- 24/157 patients (15%) had additional chromosomal abnormalities at CML-CP diagnosis
- Molecular profile:
 - 142/157 patients (90%) had major BCR::ABL1 rearrangement
 - 7/89 patients (8%) with mutation status assessed had T315I mutation
Figure 2. Sankey diagram of treatment patterns for CML-CP patients with ≥3 lines of therapy.

- Mean ± SD [median] number of lines of therapy (N=157) was 3.6 ± 0.9 [3.0]; 16% of patients had 5L+
- The most frequent treatment sequences (Figure 2) were:
 - Imatinib – nilotinib – dasatinib (17%)
 - Imatinib – dasatinib – nilotinib (10%)
 - Imatinib – dasatinib – bosutinib (6%)
 - Imatinib – dasatinib – ponatinib (6%)
- TKIs received in 3L (median duration: 17 [5–47] months) were dasatinib (32%), nilotinib (19%), imatinib (18%), ponatinib (17%), and bosutinib (14%)
- 50% of patients discontinued 3L therapy; reasons for discontinuation included AEs/intolerance (69%) and resistance (23%)
Results

Clinical outcomes of patients with 3L+

- AEs were documented in 139/157 patients (89%) in 3L
 - The median number of AEs per patient was 2 in 3L; infections (18%) and asthenia (13%) were the most common AEs
- Treatment-free remission (TFR) was observed in 16 (10%) patients in 3L (median duration: 45 months); the last reported treatments were dasatinib (n=10) and nilotinib (n=6) for these patients
 - Among the 16 patients in TFR, 5 (31%) were intolerant to 3L TKI
- In 145 patients with documented responses in 3L, the rate of achieving MMR, MR4.0, and MR4.5 at 12 months was 42%, 27%, and 14%, respectively
 - MMR in 3L was achieved by 79/145 (54.5%) patients; median time to reach MMR was 20.8 months
- The median OS since 3L treatment initiation was 12 (8–16) years
- Age at index date, additional chromosomal abnormalities at CMP-CP diagnosis, and achievement of MMR in 3L were statistically significant factors impacting OS in the multivariate Cox regression model (Table 2)
Table 2. Multivariate Cox regression model of OS

<table>
<thead>
<tr>
<th>Hazard ratio</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) at index date</td>
<td>1.07 (1.02, 1.13)</td>
<td><0.01*</td>
</tr>
<tr>
<td>Male (ref: female)</td>
<td>0.86 (0.27, 2.80)</td>
<td>0.81</td>
</tr>
<tr>
<td>ELTS risk score at CML-CP diagnosis (ref: low risk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>0.91 (0.14, 6.10)</td>
<td>0.92</td>
</tr>
<tr>
<td>High risk</td>
<td>2.69 (0.30, 23.65)</td>
<td>0.37</td>
</tr>
<tr>
<td>Not assessed or unknown</td>
<td>2.28 (0.49, 10.63)</td>
<td>0.29</td>
</tr>
<tr>
<td>Additional chromosomal abnormalities at CML-CP diagnosis (ref: no additional abnormalities)</td>
<td>5.67 (1.71, 18.82)</td>
<td><0.01*</td>
</tr>
<tr>
<td>MMR was achieved in 3L (ref: MMR was not achieved in 3L)</td>
<td>0.10 (0.02, 0.47)</td>
<td><0.01*</td>
</tr>
<tr>
<td>Ponatinib (ref: non-ponatinib)</td>
<td>1.35 (0.18, 10.04)</td>
<td>0.77</td>
</tr>
<tr>
<td>Reason for terminating 2L is resistance or lack of efficacy (ref: no)</td>
<td>1.60 (0.33, 7.67)</td>
<td>0.56</td>
</tr>
<tr>
<td>Reason for terminating 2L is intolerance or management of AEs (ref: no)</td>
<td>0.91 (0.18, 4.51)</td>
<td>0.91</td>
</tr>
</tbody>
</table>

ABBREVIATIONS: 2L, second line; CI, confidence interval; CML-CP, chronic myeloid leukemia in chronic phase; ELTS, EUTOS long-term survival; MMR, major molecular response; OS, overall survival; ref, reference category.

[1] 12 Patients were not tested for molecular response in 3L and were therefore not included in the analysis.
Results

Baseline characteristics of patients with T315I mutation

• Of the 17 patients harboring the T315I mutation, median age [interquartile range] at diagnosis was 52 [39–59] years; 24% of patients were female

• Risk scores at CML-CP diagnosis:
 • Sokal: 6% low, 12% intermediate, 65% high, 18% unknown
 • ELTS: 18% low, 24% intermediate, 41% high, 18% unknown

• The T315I mutation was identified in 2L (N=6, 35%), 3L (N=5, 29%), 4L (N=4, 24%), and 5L (N=2, 12%)
Results

Treatment patterns and clinical outcomes of patients with T315I mutation

- 41% of patients with T315I mutation had ≥5 lines of therapy (Figure 3)
 - Mean duration of line of therapy identified as the T315I line of interest was 18.5 months
 - Ponatinib was the most frequently used TKI (N=10, 59%) following identification of the mutation, followed by dasatinib (N=3, 18%), allogeneic stem cell transplantation (N=2, 12%), and asciminib (N=2, 12%)
 - In the last line of therapy, the most common treatments were ponatinib (N=7, 41%) and asciminib (N=3, 18%) through compassionate use or clinical trial
 - 65% of patients (N=11) discontinued treatment, mainly due to AEs/intolerance [N=9, 82%] and resistance [N=4, 36%])
 - Thrombocytopenia (18%) was the most common AE
 - The median (range) OS since T315I identification was 5 (3–10) years
41% of patients with T315I mutation had ≥5 lines of therapy (Figure 3).

In the last line of therapy, the most common treatments were ponatinib (N=7, 41%) and asciminib (N=3, 18%) through compassionate use or clinical trial.

65% of patients (N=11) discontinued treatment, mainly due to AEs/intolerance [N=9, 82%] and resistance [N=4, 36%].

Thrombocytopenia (18%) was the most common AE.

The median (range) OS since T315I identification was 5 (3–10) years.
Limitations

- Because of the retrospective and nonrandomized study design, the results may have been influenced by uncontrolled confounding; reporting, selection, or recall bias; or non-random missing data (e.g., data on comorbidities and AEs not recorded in patient charts)
 - Selection bias was minimized by including data from eligible patients (currently living or deceased) up until the date of last contact or date of death
- The three clinical sites included in the study may not be representative of all such sites in France or in other countries with different reimbursement or practice patterns
Conclusions

- In this chart review, CML-CP patients with 3L+ received up to 7 lines of therapy, and those harboring the T315I mutation received up to 6 lines.

- In both 3L+ and T315I cohorts, patients switched between first-, second-, and third-generation TKIs.

- The most common reasons for treatment discontinuation in 1L, 2L, and 3L—including in patients with T315I mutation—were intolerance and resistance; In 2L and 3L, we observed a numerically higher proportion of patients discontinued treatment due to intolerance than resistance.

- Earlier lines of treatment lasted <2 years in CML-CP patients in 3L and <1 year in patients harboring the T315I mutation, suggesting a need for novel therapeutics with improved safety and efficacy profiles earlier in the treatment course.

- CML-CP patients who discontinued treatment due to resistance/lack of efficacy in 2L exhibited worse OS/PFS than patients who discontinued for other reasons.
Acknowledgments and References

Acknowledgments

Janice Imai of Analysis Group, Inc. and Sreenu Lavudiya of Novartis Healthcare Pvt Ltd. provided support during the study and poster development. V.S.Hari Prasad of Novartis Healthcare Pvt Ltd. provided graphic design support.

References

