Comparative Efficacy and Safety of Tisagenlecleucel and Axicabtagene Ciloleucel in Relapsed/Refractory Follicular Lymphoma

Michael Dickinson, MD; Joaquín Martínez-López, MD, PhD; Elsene Heslouw; Carla Jousseaume3; Carla Anjos 4; Hongbo Yang, PhD5; Xinglei Chai, PhD 5; Cheryl Xiang, MBA 5; Travis Wang, MS5; Roberto Ramos, MD 4; Chiara Gibertini, MD 6; Michael Dickinson, MD 1

1. Peter MacCallum Cancer Centre, Royal Melbourne Hospital and the University of Melbourne, Melbourne, VIC, Australia; Imperial College University of London, UK; Research Institute in Molecular Pathology, Vienna, Austria; Faculty of Medicine, University of Lübeck, Germany, Hannover Medical School, Hannover, Germany; 2. Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Amgen Biologics Group B, Bolder, MA, USA; Symphogen A/S, Gentofte, Denmark; Gentofte, Denmark; 3. University of Colorado, Denver, CO, USA; 4. University of Wisconsin-Madison, Madison, WI, USA; 5. Stanford University School of Medicine, Stanford, CA, USA; 6. Guy's and St Thomas' NHS Foundation Trust, London, UK.

This study was sponsored by Novartis Pharmaceutical Corporation (Novartis; http://www.novartis.com).

Advisory board and research funding from Bristol-Myers Squibb, Roche, and Merck, advisory board and research funding from Bristol-Myers Squibb, Roche, and Merck, research funding from BMS, Incyte, Roche, and Astellas; other from Novartis and Janssen.

Michael Dickinson, MD: honorarium from Celgene, Bristol-Myers Squibb and Novartis, research funding from Celgene, Bristol-Myers Squibb, Roche, and Merck, advisory board and research funding from Bristol-Myers Squibb, Roche, and Merck, research funding from BMS, Incyte, Roche, and Astellas; other from Novartis and Janssen.

John Vose, MD: research funding from Celgene, Novartis, Genentech, Roche, and Merck, advisory board from Nordic Nanovector, Novartis, and Janssen.

Michael Dickinson, MD: research funding from BMS, Incyte, Roche, and Merck, advisory board from Nordic Nanovector, Novartis, and Janssen.

Primary funding source: Novartis Pharmaceutical Corporation.

Key findings & conclusions

• This MAIC study of ELARA vs. ZUMA-5 in r/r FL patients with ≥ 2 prior lines of therapy, both tisa-cel and axi-cel have been compared in r/r FL utilizing a propensity-score weighting approach. The adjusted baseline characteristic included:
  - Age, sex, ECOG, Ann Arbor stage, FLIPI, tumor burden (Supplement 1: Table S1).
  - Efficacy outcomes comparison
    - Similar results were observed in sensitivity analysis for ORR, CRS, and PFS (Figure 3).
  - Safety outcomes comparison
    - Similar safety results were observed in sensitivity analysis (Figure 4).

Efficacy outcomes comparison

- Both before and after weighting, efficacy outcomes were comparable between tisa-cel and axi-cel including DCR (before: A = 0.05; after: A = 0.11; both p=0.80), and ORR (before: A = 0.38; after: A = 0.35; both p=0.64). The Efficacy-evaluable set was defined as patients with at least 12 months of follow-up. (Figure 1)

- OS was comparable both before (HR = 1.04 (0.69, 1.57)) and after (HR = 0.99 (0.63, 1.57)); however, the results need to be interpreted with caution due to limited events with the current follow-up time, which could lead to high uncertainties.

- Sensitivity analysis: all ELARA infused patients and all ZUMA-5 infused patients

- Ninety-six ELARA infused patients with and without bridging chemotherapy were matched with 124 ZUMA-6 infused patients with adjusted baseline characteristics being balanced after weighting (See Table 1).

- The results for OS need to be interpreted with caution because only one efficacy-evaluable set was used in the current study, excluding one patient from ZUMA-5 infused bridging chemotherapy.

-橋梁化療薬使用後のOSに関しては、ZUMA-5の1症例を除くすべての症例で検討しました。