Tisagenlecleucel in Pediatric and Young Adult Patients With Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia: Final Analyses From the ELIANA Study

1Department of Pediatric Hematology – Oncology, Hospital Sant Joan de Déu Barcelona, and Institut de Recerca Sant Joan de Déu, Barcelona, Spain; 2Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia and Department of Pediatrics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; 3Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 4University Hospital Robert Debré (APHP) and Université de Paris, Paris, France; 5Division of Stem Cell Transplantation and Immunology, Hospital for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany; 6Department of Pediatrics, Faculty of Medicine, University of Montreal, and the Hematology Oncology Division and Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, QC, Canada; 7Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway; 8Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; 9Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA; 10National Bone Marrow Donor Program, Be the Match, Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN; 11Division of Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA; 12Pediatric Transplant and Cellular Therapy, Duke University Medical Center, Durham, NC; 13Oregon Health and Science University, Portland, OR; 14Stem Cell Transplantation Unit, St. Anna Children’s Hospital, Vienna, Austria; 15Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI; 16Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Ospedale San Gerardo, Monza, Italy; 17Saint-Louis Hospital (APHP) and Université de Paris, Paris, France; 18Children’s Cancer Centre, Royal Children’s Hospital and Murdoch Children’s Research Institute, Parkville, VIC, Australia; 19Division of Haematology/Oncology/Bone Marrow Transplantation, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada; 20Tisch Children’s Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; 21Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; 22Children’s Mercy Hospital and Clinics, Kansas City, MO; 23Novartis Pharmaceuticals Corporation, East Hanover, NJ; 24Novartis Pharmaceuticals Corporation, Dublin, Ireland; 25Division of Pediatric Hematology and Oncology, Intermountain Primary Children’s Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT

Abstract S112

susana.rives@sjd.es

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
Disclosures

- Novartis (consulting fees, advisory boards, presentations, educational events, Data Safety Monitoring Board, support for attending meetings and travel)
- Amgen (advisory boards, educational events, support for attending meetings and travel)
- Celgene, Servier, and Jazz Pharmaceuticals (advisory boards, support for attending meetings and travel)
- BMS, Cellectis, and Kite (advisory boards)
- Spanish Pediatric Hematology and Oncology Society and in the I-BFM Study Group of Childhood Leukemia (leadership or fiduciary role)
- CAR-T cell clinical trials (principal investigator)
Introduction

• Pediatric and young adult patients with r/r B-ALL experience a treatment journey characterized by diminishing likelihood of a cure and increasing morbidity with each additional line of salvage therapy

• Tisagenlecleucel is an autologous CD19-directed chimeric antigen receptor (CAR) T-cell therapy approved for use in pediatric and young adults with B-ALL and adults with B-cell lymphomas
 – In the primary analysis of the global Phase II ELIANA trial (NCT02435849), tisagenlecleucel provided high rates of remission (>80%) in children and young adults with r/r B-ALL, with 62% of responders remaining relapse-free at 24 months1,2

• Here, we report the efficacy and safety analyses in patients followed up for a maximum of 5.9 years post-tisagenlecleucel infusion
ELIANA Study Design

Key Eligibility Criteria

- **Inclusion**
 - r/r B-cell ALL, aged 3-21 years\(^a\)
 - Bone marrow with ≥5% lymphoblasts

- **Exclusion**
 - Isolated extramedullary disease relapse
 - Prior CD19-directed or gene therapy

Study Treatment

- **Lymphodepleting chemotherapy prior to infusion**
 - Fludarabine 30 mg/m\(^2\) IV daily for 4 doses
 - Cyclophosphamide 500 mg/m\(^2\) IV daily for 2 doses

- **Tisagenlecleucel dose range (single infusion)**
 - 0.2 to 5.0 \(× 10^6\) cells/kg for patients ≤50 kg
 - 0.1 to 2.5 \(× 10^8\) cells for patients >50 kg

Endpoints

- **Primary endpoint:** Overall remission rate (CR + CRi) within 3 months
 - 4-week maintenance of remission
 - IRC assessment

- **Secondary endpoints**
 - MRD status, DOR, RFS, OS, EFS, cellular kinetics, safety

\(^a\)Age of 3 years at the time of screening to age of 21 years at the time of initial diagnosis.

ALL, acute lymphoblastic leukemia; CD, cluster of differentiation; CR, complete remission; CRi, CR with incomplete blood count recovery; DOR, duration of response; EFS, event-free survival; IRC, independent review committee; IV, intravenous; MRD, minimal residual disease; OS, overall survival; r/r B-ALL, relapsed or refractory B-cell acute lymphoblastic leukemia; RFS, relapse-free survival.
Patient with Down syndrome died due to cerebral hemorrhage.

CD19 status at relapse was characterized based on MFC-MRD assay and NGS analysis. (Pulsipher et al., 2022, Blood Cancer Discovery).

Among the 69 responders within 3 months post-infusion, 10 patients (14%) had alloSCT in remission and 7 patients (10%) had alloSCT after relapse.

Death due to lower respiratory tract infection (n=1)

*Patient with Down syndrome died due to cerebral hemorrhage. CD19 status at relapse was characterized based on MFC-MRD assay and NGS analysis. (Pulsipher et al., 2022, Blood Cancer Discovery).

alloSCT, allogeneic stem cell transplantation; CD, cluster of differentiation; CR, complete remission; CRi, CR with incomplete blood count recovery; D, day; MFC, multiparametric flow cytometry; MRD, minimal residual disease; mo, month; NGS, next-generation sequencing; NRM, non-relapse related mortality; RFS, relapse-free survival.
Key Baseline Demographics and Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (N=79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range), years</td>
<td>11 (3-24)</td>
</tr>
<tr>
<td>Sex, male, n (%)</td>
<td>45 (57)</td>
</tr>
<tr>
<td>Prior alloSCT, n (%)</td>
<td>48 (61)</td>
</tr>
<tr>
<td>Lines of prior therapies, median (range), n</td>
<td>3 (1-8)</td>
</tr>
<tr>
<td>Disease status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Primary refractory</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Relapsed</td>
<td>73 (92)</td>
</tr>
<tr>
<td>Morphologic blast count in bone marrow, median (range), a (%)</td>
<td>74 (5-99)</td>
</tr>
<tr>
<td>CNS status classification, n (%)</td>
<td></td>
</tr>
<tr>
<td>CNS-1</td>
<td>67 (85)</td>
</tr>
<tr>
<td>CNS-2</td>
<td>10 (13)</td>
</tr>
<tr>
<td>CNS-3<sup>b</sup></td>
<td>1 (1)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

*Morphologic blast count in bone marrow is the maximum from biopsy or aspirate prior to enrollment. *^aPatient was CNS-3 at screening and was <CNS-3 prior to infusion.

alloSCT, allogeneic stem cell transplantation; CNS, central nervous system.
High Response Rate Post Tisagenlecleucel

<table>
<thead>
<tr>
<th>BOR Within 3 Months by IRC assessment</th>
<th>All Patients N=79 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>49 (62)</td>
</tr>
<tr>
<td>CRi</td>
<td>16 (20)</td>
</tr>
<tr>
<td>No response</td>
<td>7 (9)</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>7 (9)</td>
</tr>
<tr>
<td>ORR(^a)</td>
<td>65 (82)</td>
</tr>
</tbody>
</table>

- 98% of patients who achieved remission were MRD– at Month 3

\(^a\)Only patients who achieved BOR of CR or CRi within 3 months are included. \(^b\)MRD % <0.01.
BOR, best overall response; CR, complete remission; CRi, CR with incomplete blood count recovery; CNS, central nervous system; IRC, independent review committee; MRD, minimal residual disease; ORR, overall remission rate.
Median RFS Was 43 Months

RFS for Patients With a CR/CRi within 3 months

5-year RFS: 44% (95% CI, 31%-56%)

Note: RFS is without censoring for SCT and other cancer therapies
*1 patient who died at Month 17 while in CR was censored as the event happened after at least 2 missing assessments.
CR, complete remission; CRi, CR with incomplete blood count recovery; NE, not estimable; RFS, relapse-free survival; SCT, stem cell transplant.
Median Time to B-cell Recovery Was 39 Months in Responders

- The probability of B-cell aplasia at
 - Month 6 was 83% (95% CI, 71%-91%)
 - Month 12 was 71% (95% CI, 57%-82%)
- Patients with B-cell recovery experienced a 2-year cumulative incidence of relapse of 40%

Note: B-Cell recovery is censored for HSCT.
(H)SCT, (hematopoietic) stem cell transplantation; NE, not estimable.
Post Tisagenlecleucel Infusion, 25% of Patients Underwent AlloSCT

<table>
<thead>
<tr>
<th>Patients Who Achieved Remission</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=69</td>
</tr>
<tr>
<td>No. of patients who received post infusion alloSCT, n (%)<sup>a</sup></td>
</tr>
<tr>
<td>AlloSCT in remission</td>
</tr>
<tr>
<td>17 (25)</td>
</tr>
<tr>
<td>AlloSCT after relapse</td>
</tr>
<tr>
<td>10 (14)</td>
</tr>
<tr>
<td>7 (10)</td>
</tr>
</tbody>
</table>

Four patients had alloSCT within 3 months post infusion and the remaining had alloSCT after 3 months post infusion. alloSCT, allogeneic stem cell transplantation.
Median EFS was 15 Months

EFS Without Censoring for alloSCT
5-year EFS: 36% (95% CI, 25%-47%)

EFS With Censoring for alloSCT
5-year EFS: 34% (95% CI, 23%-45%)

Kaplan-Meier medians
All patients: 15 months, 95% CI [10-45]

Censoring times
All patients (N=79)
Number of events (n)
Patients: 46
Kaplan-Meier medians
All patients: 13 months, 95% CI [9-35]

allesCT, allogeneic stem cell transplantation; EFS, event-free survival; NE, not estimable.
Median OS Was Not Reached

Overall Survival

5-year OS: 55% (95% CI, 43%-66%)

Note: OS is without censoring for alloSCT.
alloSCT, allogeneic stem cell transplantation; NE, not estimable; OS, overall survival.
OS And EFS Were Comparable Between Pediatric And Young Adult (18-25 years-old) Patients

OS Without Censoring for AlloSCT

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>Number of patients still at risk</th>
<th>Censoring times</th>
<th>Number of events</th>
<th>Kaplan-Meier medians</th>
</tr>
</thead>
<tbody>
<tr>
<td><18 years</td>
<td>65 61 58 54 51 48 46 46 42 41 38 36 36 35 35 34 31 29 24 16 4 3 1 0</td>
<td><18 years (N=65)</td>
<td><18 years (N=26)</td>
<td><18 years NE months, 95% CI [44-NE]</td>
</tr>
<tr>
<td>≥18 years</td>
<td>14 12 12 12 9 9 7 7 7 7 7 7 7 6 6 5 5 4 1 0</td>
<td>≥18 years (N=14)</td>
<td>≥18 years (N=7)</td>
<td>≥18 years 15 months, 95% CI [3-NE]</td>
</tr>
</tbody>
</table>

EFS Without Censoring for AlloSCT

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>Number of patients still at risk</th>
<th>Censoring times</th>
<th>Number of events</th>
<th>Kaplan-Meier medians</th>
</tr>
</thead>
<tbody>
<tr>
<td><18 years</td>
<td>65 51 41 36 33 29 28 27 25 25 24 24 23 20 19 18 16 13 13 11 7 0</td>
<td><18 years (N=65)</td>
<td><18 years (N=38)</td>
<td><18 years NE months, 95% CI [10-NE]</td>
</tr>
<tr>
<td>≥18 years</td>
<td>14 11 11 11 7 7 7 6 6 6 6 6 6 5 5 5 4 4 4 4 3 0</td>
<td>≥18 years (N=14)</td>
<td>≥18 years (N=9)</td>
<td>≥18 years 15 months, 95% CI [9-48]</td>
</tr>
</tbody>
</table>

alloSCT, allogeneic stem cell transplantation; EFS, event-free survival; NE, not estimable; OS, overall survival.
Adverse Events of Special Interest >1 Year Post Infusion

- 82% of patients received IVIG at any time post-infusion; 33% >1 year and 16% >2 years post-infusion
 - 88% of patients in remission received IVIG during persistent B-cell aplasia

<table>
<thead>
<tr>
<th>AESI occurring >1 y post infusion</th>
<th>Any Grade, n (%)</th>
<th>Grade ≥3, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients with at least 1 event</td>
<td>27 (39)</td>
<td>15 (21)</td>
</tr>
<tr>
<td>Hemophagocytic lymphohistiocytosis/CRS</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Serious neurological events</td>
<td>2 (3)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Infection</td>
<td>23 (33)</td>
<td>14 (20)</td>
</tr>
<tr>
<td>Hematological disorders, including cytopenias</td>
<td>7 (10)</td>
<td>4 (6)</td>
</tr>
<tr>
<td>Secondary malignancy</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

AESI, adverse events of special interest; CRS, cytokine release syndrome; IVIG, intravenous immunoglobulin.

*a Includes patients who achieved response at any time, including > Month 3. **If a patient received multiple treatments of IVIG, the duration of each treatment was derived and summed to provide the total duration of IVIG treatment for the patient.

14
Conclusions

- These long-term follow-up data demonstrate continued durable efficacy of tisagenlecleucel in heavily pretreated pediatric and young adult patients with r/r B-ALL.
- No new long-term treatment-related safety events were observed in this longer-term >5-year follow-up.
- Long-term remission rates up to 5.9-years of follow-up from ELIANA demonstrate that tisagenlecleucel may be a curative treatment option for heavily pretreated pediatric and young adult patients with r/r B-ALL.
Acknowledgments

• The authors sincerely thank
 – The patients enrolled in the ELIANA study and their families
 – The principal investigators and support staff
 – SSC, DMC, IRC members
• This study was sponsored by Novartis Pharmaceuticals Corporation (ClinicalTrials.gov NCT02435849 and EudraCT 2013-003205-25)
• Medical writing support was provided by Nitya Venkataraman, PhD, of Healthcare Consultancy Group, LLC, and was funded by Novartis Pharmaceuticals Corporation
BACK UP
EFS by Age Group (<18 years and ≥18 years)

EFS with Censoring for Antineoplastic Therapies

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>Number of patients still at risk</th>
<th>Number of events</th>
<th>Kaplan-Meier medians</th>
<th>Censoring times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><18 years (N=31)</td>
<td>≥18 years (N=8)</td>
<td><18 years 37.4 months, 95% CI [8.87-NE]</td>
<td><18 years (N=65) ≥18 years (N=14)</td>
</tr>
<tr>
<td></td>
<td>≥18 years (N=10)</td>
<td></td>
<td>≥18 years 18.7 months, 95% CI [2.79-NE]</td>
<td></td>
</tr>
</tbody>
</table>

EFS With Censoring for AlloSCT

<table>
<thead>
<tr>
<th>Time (Months)</th>
<th>Number of patients still at risk</th>
<th>Number of events</th>
<th>Kaplan-Meier medians</th>
<th>Censoring times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><18 years (N=37)</td>
<td>≥18 years (N=9)</td>
<td><18 years 14.3 months, 95% CI [8.34-34.73]</td>
<td><18 years (N=65) ≥18 years (N=14)</td>
</tr>
<tr>
<td></td>
<td>≥18 years (N=10)</td>
<td></td>
<td>≥18 years 11.6 months, 95% CI [2.79-NE]</td>
<td></td>
</tr>
</tbody>
</table>

alloSCT, allogeneic stem cell transplantation; EFS, event free survival; NE, not estimable.