Pharmacokinetics/Pharmacodynamics, Safety, and Efficacy of Crizanlizumab in Patients With Sickle Cell Disease Aged 12 to <18 Years: 2-Year Data From the Phase 2 SOLACE-Kids Study

Matthew Heeney1,*, David Rees2, Mariane de Montalembert3, Isaac Odame4, Yasser Wali5, Sarfaraz Sayyed6, Velusamy Shanmuganathan Muthusamy6, Anisha E. Mendonza7, Michele Nassin8, Deborah Keefe8, Julie Kanter9

*Presenting author

1Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; 2Department of Paediatric Haematology, King's College Hospital, London, UK; 3Hôpital Universitaire Necker-Enfants Malades, Paris, France; 4The Hospital for Sick Children (SickKids) and the University of Toronto, Toronto, Ontario, Canada; 5Child Health Department, Sultan Qaboos University, Muscat, Oman; 6Novartis Healthcare Pvt. Ltd., Hyderabad, Telangana, India; 7Novartis Institutes for BioMedical Research, Cambridge, MA, USA; 8Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA. 9Division of Hematology-Oncology, University of Alabama-Birmingham, Birmingham, AL, USA

Scan to obtain

• Presentation

https://bit.ly/HeeneyMS267

Copies of this presentation obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission of the authors.

Oral presentation at European Hematology Association, held in person in Frankfurt, Germany and virtually from June 8 to 15, 2023.
Disclosures

- According to the Code of Medical Ethics, the speaker declares that this lecture is sponsored by the pharmaceutical company Novartis.

- In addition, the speaker states that the content of the lecture represents his independent views, to contribute to the sharing of medical knowledge, and does not constitute advertising of medicinal products within the meaning of the Pharmaceutical Law and regulations issued thereunder.

In the past 24 months:

- **Matthew Heeney** reports consultancy for the Novartis steering committee, FORMA Therapeutics, Global Blood Therapeutics, Oric Pharma and Bluebird Bio and Pharmacosmos; research funding from Novartis; podcast speaker for Agios; and membership of a data and safety monitoring board for Vertex/CRISPR.

- **David Rees** reports lecture honoraria from Vertex and Novartis; consulting fees from Agios, Vertex, Vifor and and Forma Therapeutics for participation on advisory and steering committees; and participation on a data and safety monitoring committees for TauRx and Mitsubishi.

- **Mariane de Montalembert** reports lecture honoraria from Novartis and Addmedica; travel support for attending ASH congress from Addmedica; and participation on an entity’s Board of Directors or advisory committees for Novartis, Addmedica and Vertex.

Contd.
Disclosures

- **Isaac Odame** reports receipt of consulting fees from Novartis (for steering committee) and from Novo Nordisk and AustinPx; research funding from Novartis; participation on a data and safety monitoring board for global blood therapeutics and advisory board for AustinPX and Novo Nordisk.

- **Yasser Wali** reports receipt of research grant and honoraria for lectures from Novartis.

- **Sarfaraz Sayyed** is a full-time employee of Novartis Healthcare Pvt. Ltd., Hyderabad, India.

- **Velusamy Shanmuganathan Muthusamy** is a full-time employee of Novartis Healthcare Pvt. Ltd., Hyderabad, India.

- **Anisha E. Mendonza** is a full-time employee of Novartis Institutes for BioMedical Research, MA, USA and eligible to receive stock.

- **Michele Nassin** is a full-time employee of Novartis Pharmaceuticals Corporation, NJ, USA and eligible to receive stock.

- **Deborah Keefe** is a full-time employee of Novartis Pharmaceuticals Corporation, NJ, USA and eligible to receive stock.

- **Julie Kanter** reports receipt of consulting fees from Novartis, Bluebird Bio, Vertex, and GSK; honoraria from Novartis, ORIC, Bausch, Chiesi, and Glycomimetics for advisory boards; travel support for attending ASH from Medscape; participation on a data safety monitoring board for NovoNordisc, Magenta; and unpaid presenter for National Alliance of Sickle Cell Centers and NHLBI study section.
Background

SCD is an inherited blood disorder1
- Characterized by hemolytic anemia, endothelial damage, and acutely painful VOCs
- Causes chronic and potentially life-threatening complications

Phase II SUSTAIN study2
- Crizanlizumab, a humanized monoclonal anti–P-selectin antibody, reduced the annualized rate of VOCs leading to a healthcare visit by 45.3% vs placebo (P=0.01) in patients with SCD

SOLACE-kids study – Initial 26-week analysis3
- Crizanlizumab 5 mg/kg was safe and well tolerated in patients (n=50) with SCD aged 12 to <18 years
- Results were consistent with the established profile in adults from the SUSTAIN study

Current analysis of SOLACE-kids study reports
- updated PK and PD (ex vivo P-selectin inhibition), safety, and efficacy results for patients with SCD aged 12 to <18 years who received crizanlizumab 5 mg/kg IV for 2 years (cutoff date: 05 May 2022)

IV, intravenous; PD, pharmacodynamics; PK, pharmacokinetics; SCD, sickle cell disease; VOC, vaso-occlusive crisis.

VOC is defined as pain crises and other complicated crises such as acute coronary syndrome, priapism, and hepatic or splenic sequestration.

SOLACE-kids is a Phase II, open-label, single-arm, multicenter study to assess appropriate dosing and evaluate the safety and efficacy of crizanlizumab in pediatric patients with SCD.

Key inclusion criteria
- Patients aged 6 months to <18 years
- Confirmed diagnosis of SCD (any genotype)
- ≥1 VOC within the preceding 12 months
- Concomitant HU allowed*

Primary endpoints
- PK and PD (P-selectin inhibition) parameters
- Frequency of AEs

Secondary endpoints
- Annualized rate of
 - VOCs leading to a healthcare visit
 - VOCs treated at home
 - Hospitalizations and ER visits (both overall and VOC related)
- Other safety measures (immunogenicity)

Crizanlizumab 5 mg/kg IV is administered on Day 1, Day 15, then on Day 1 of every 4 weeks thereafter for up to 2 years

AE, adverse event; ER, emergency room; HU, hydroxyurea; IV, intravenous; PD, pharmacodynamic; PK, pharmacokinetic; SCD, sickle cell disease; VOC, vaso-occlusive crisis.

*Must be receiving HU for ≥6 months prior to screening and plan to continue taking it at the same dose and schedule during the study; **It is planned that at least 100 patients will be enrolled in total; †Once the appropriate dose is confirmed in patients aged ≥2 years, patients aged 6 months to <2 years can be included; ‡If unconfirmed, dose will be adjusted based on exposure levels observed in adult patients enrolled in the SOLACE-adults study† (Group 1) or by a population PK model (Groups 2 and 3), and ≥8 additional patients enrolled; §Each group separately or combined in close cutoff dates. Heeney MM et al. Oral JSCDH-D-22-1221467 presented at FSCDR 2022 https://bit.ly/Heeney1467
Patients in Group 1 (aged 12 to <18 years) were representative of the typical SCD population *(cutoff date: 5 May 2022)*

Baseline characteristics and duration of exposure

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group 1 (N=50)</th>
<th>Group 1 (N=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>14.9 (13.3, 16.9)</td>
<td></td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>29 (58.0)</td>
<td>44 (88.0)</td>
</tr>
<tr>
<td>Male</td>
<td>21 (42.0)</td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>32 (64.0)</td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>White</td>
<td>9 (18.0)</td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>Asian</td>
<td>7 (14.0)</td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>White, Asian</td>
<td>2 (4.0)</td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>Concomitant medication, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td>42 (84.0)</td>
<td></td>
</tr>
<tr>
<td>L-glutamine + HU</td>
<td>2 (4.0)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>6 (12.0)</td>
<td></td>
</tr>
<tr>
<td>Genotype, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbSS</td>
<td></td>
<td>44 (88.0)</td>
</tr>
<tr>
<td>HbSC</td>
<td></td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>HbSβ⁰</td>
<td></td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>HbSβ⁺</td>
<td></td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>VOC events in prior 12 months, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>3.0 (1, 5)</td>
<td>3.0 (1, 5)</td>
</tr>
<tr>
<td><5</td>
<td>34 (68)</td>
<td>16 (32)</td>
</tr>
<tr>
<td>≥5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC type in prior 12 months, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncomplicated sickle cell VOC</td>
<td>50 (100)</td>
<td></td>
</tr>
<tr>
<td>Acute chest syndrome</td>
<td>10 (20)</td>
<td></td>
</tr>
<tr>
<td>Splenic sequestration</td>
<td>2 (4)</td>
<td></td>
</tr>
<tr>
<td>Duration of treatment (weeks)</td>
<td></td>
<td>106.1 (94.9, 107)</td>
</tr>
</tbody>
</table>

HU, hydroxyurea; Q1, first quartile; Q3, third quartile; SCD, sickle cell disease; VOC, vaso-occlusive crisis.
Patients in Group 1 (aged 12 to <18 years) were representative of the typical SCD population

Baseline characteristics and duration of exposure

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group 1 (N=50)</th>
<th>Group 1 (N=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>14.9 (13.3, 16.9)</td>
<td></td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>29 (58.0)</td>
<td>44 (88.0)</td>
</tr>
<tr>
<td>Male</td>
<td>21 (42.0)</td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>32 (64.0)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>9 (18.0)</td>
<td>34 (68)</td>
</tr>
<tr>
<td>Asian</td>
<td>7 (14.0)</td>
<td>16 (32)</td>
</tr>
<tr>
<td>White, Asian</td>
<td>2 (4.0)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Concomitant medication, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td>42 (84.0)</td>
<td></td>
</tr>
<tr>
<td>L-glutamine + HU</td>
<td>2 (4.0)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>6 (12.0)</td>
<td></td>
</tr>
<tr>
<td>Genotype, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbSS</td>
<td></td>
<td>44 (88.0)</td>
</tr>
<tr>
<td>HbSC</td>
<td></td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>VOC events in prior 12 months, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>3.0 (1, 5)</td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>34 (68)</td>
<td></td>
</tr>
<tr>
<td>≥5</td>
<td>16 (32)</td>
<td></td>
</tr>
<tr>
<td>VOC type in prior 12 months, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncomplicated sickle cell VOC</td>
<td>50 (100)</td>
<td></td>
</tr>
<tr>
<td>Acute chest syndrome</td>
<td>10 (20)</td>
<td></td>
</tr>
<tr>
<td>Splenic sequestration</td>
<td>2 (4)</td>
<td></td>
</tr>
<tr>
<td>Duration of treatment (weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>106.1 (94.9, 107)</td>
<td></td>
</tr>
</tbody>
</table>

All patients in Group 1 received crizanlizumab 5.0 mg/kg and 45 (90%) patients received treatment for ≥26 weeks and 43 (86%) patients received for ≥ 54 weeks.

SCD, sickle cell disease.
No new safety signals were identified in patients aged 12 to <18 years

- **47 (94%)** patients had ≥1 AE
- **15 (30%)** patients reported treatment-related AEs.
 - Most frequent treatment-related AEs:
 - Headache: n=19 (38%)
 - COVID-19 and vomiting: n=14 (28%) each
 - Pyrexia: n=13 (26%)
 - Grade ≥3 treatment-related AEs: n=2 (4%)
 - Treatment-related serious AEs: n=0

- **16 (32%)** patients had ≥1 AE leading to dose interruption/change.
 - Most frequent AEs leading to dose interruption or change:
 - COVID-19: n=5 (10%)
 - IRR: n=2 (4%)
 - Back pain and dizziness: n=2 (4%) each
 - Grade ≥3 AEs leading to dose interruption or change: n=5 (10%)

- Of the 2 (4%) patients reporting AEs leading to discontinuation, none (including 1 death due to bacterial meningitis) was deemed related to crizanlizumab per the investigator.

AE, adverse event; IRR, infusion-related reaction.
*By preferred term; †Two Grade ≥3 treatment-related AEs (back pain and pain in extremity) were reported in the same patient.
AEs of special interest: Few patients had possible IRRs presenting as pain events and all had resolved or were resolving at data cutoff

Effect on hemostasis

- All grades: n=12 (24%)
- Grade ≥3: n=1 (2%)

No AEs were related to crizanlizumab treatment, and all had resolved by data cutoff.

11 (22%) patients had hemorrhage events* and 1 (2%) patient had thrombosis.

Infections

- All grades: n=37 (74%)
- Grade ≥3: n=6 (12%)**

Conjunctivitis reported in 1 (2%) patient was related to crizanlizumab treatment.

1 patient died of presumed bacterial meningitis (not considered treatment related).

Potential severe IRRs‡

- All grades: n=7 (14%)
- Grade ≥3: n=1 (2%)

No AEs were related to crizanlizumab treatment, and all had resolved or were resolving at data cutoff.

Potential IRRs presenting as pain events§

- All grades: n=11 (22%)
- Grade ≥3: n=1 (2%)

No AEs were serious and n=1 (2%) was related to crizanlizumab treatment.

All had resolved or were resolving at data cutoff.

AE, adverse event; IRR, infusion-related reaction.

*Hemorrhage events included epistaxis and hematuria (3 [6%], contusion (2 [4%]), and haematochezia, intermenstrual bleeding, increased international normalized ratio, post procedural haemorrhage, rectal haemorrhage, retinal haemorrhage (1 [2%] patient each); **1 patient was reported with serious and grade 5 infection of encephalitis, bacterial meningitis, and septic shock;

‡Severe reaction, intended to identify potentially more severe reactions, and occurring any time after infusion (regardless of grade and causality); §'Pain events' on the day of infusion.
Conjunctivitis reported in 1 (2%) patient was related to crizanlizumab treatment.

AEs of special interest: Few patients had possible IRRs presenting as pain events and all had resolved or were resolving at data cutoff.

Effect on hemostasis

- All grades: n=12 (24%)

Infections

- All grades: n=37 (74%)

Potential severe IRRs‡

- All grades: n=7 (14%)

Potential IRRs presenting as pain events$

- All grades: n=11 (22%)

No patients developed anti-drug antibodies against crizanlizumab.

AEs were related to crizanlizumab treatment, and all had resolved by data cutoff.

- 11 (22%) patients had hemorrhage events* and 1 (2%) patient had thrombosis

Conjunctivitis reported in 1 (2%) patient was related to crizanlizumab treatment.

- 1 patient died of presumed bacterial meningitis (not considered treatment related)

No AEs were serious and n=5 (10%) were related to crizanlizumab treatment.

- Anaphylactic reaction of grade 3 and drug hypersensitivity of grade 1 (not related to crizanlizumab) were reported in 1 patient each

No AEs were related to crizanlizumab treatment, and all had resolved by data cutoff.

- 1 patient died of presumed bacterial meningitis (not considered treatment related)

No AEs were serious and n=1 (2%) was related to crizanlizumab treatment.

- All had resolved or were resolving by data cutoff

AE, adverse event; IRR, infusion-related reaction.

*Hemorrhage events included epistaxis and hematuria (3 [6%], contusion (2 [4%]), and haematochezia, intermenstrual bleeding, increased international normalized ratio, post procedural haemorrhage, rectal haemorrhage, retinal haemorrhage (1 [2%] patient each). **1 patient was reported with serious and grade 5 infection of encephalitis, bacterial meningitis, and septic shock; ‡Severe reaction, intended to identify potentially more severe reactions, and occurring any time after infusion (regardless of grade and causality); §Pain events on the day of infusion.
The incidence of grade ≥3 AEs of special interest in patients who received crizanlizumab 5.0 mg/kg in Group 1 of SOLACE-kids was comparable with that observed with crizanlizumab in SUSTAIN.

<table>
<thead>
<tr>
<th>Effect on hemostasis</th>
<th>SOLACE-kids</th>
<th>SUSTAIN¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crizanlizumab 5.0 mg/kg</td>
<td>Crizanlizumab 5.0 mg/kg</td>
</tr>
<tr>
<td></td>
<td>N=50</td>
<td>N=66</td>
</tr>
<tr>
<td>All grades</td>
<td>12 (24%)</td>
<td>11 (16.7%)</td>
</tr>
<tr>
<td>Grade ≥3</td>
<td>1 (2.0%)</td>
<td>1 (1.5%)</td>
</tr>
<tr>
<td>Infections</td>
<td>37 (74.0%)</td>
<td>35 (53.0%)</td>
</tr>
<tr>
<td>Grade ≥3</td>
<td>6 (12.0%)</td>
<td>5 (7.6%)</td>
</tr>
<tr>
<td>Potential severe IRRs</td>
<td>7 (14.0%)</td>
<td>2 (3.0%)</td>
</tr>
<tr>
<td>Grade ≥3</td>
<td>1 (2.0%)</td>
<td>0</td>
</tr>
<tr>
<td>Potential IRRs present as pain events</td>
<td>11 (22.0%)</td>
<td>14 (21.2%)</td>
</tr>
<tr>
<td>Grade ≥3</td>
<td>1 (2.0%)</td>
<td>0</td>
</tr>
<tr>
<td>Anti-drug antibodies</td>
<td>0</td>
<td>1 (1.5)*</td>
</tr>
</tbody>
</table>

¹Hemorrhage events included epistaxis and hematuria (3 [6%], contusion (2 [4%]), and haematochezia, intermenstrual bleeding, increased international normalized ratio, post procedural haemorrhage, rectal haemorrhage, retinal haemorrhage (1 [2%] patient each); ²1 patient was reported with serious and grade 5 infection of encephalitis, bacterial meningitis, and septic shock; ³Severe reaction, intended to identify potentially more severe reactions, and occurring any time after infusion (regardless of grade and causality); §'Pain events' on the day of infusion.

Serum crizanlizumab concentrations achieved maximum levels (Cmax) at the end of the 30-minute infusion, remaining steady for 4 hours post-infusion, for 5.0 mg/kg dose.

At steady state

Post-dose PK parameters (n=11)

After first dose (Single infusion)

- **AUCd15**: 10,500 (2290) \(\mu g \times h/mL^*\)
- **Cmax**: 80.5 (17.7) \(\mu g/mL^*\)
- **Tmax**: 0.633 h

After multiple doses (Steady state)

- **AUCtau**: 15,800 (2080) \(\mu g \times h/mL^*\)
- **Cmax**: 95.6 (26.6) \(\mu g/mL^*\)
- **Tmax**: 1.72 h
- **T1/2**: 10.3 days

Mean pre-dose** concentrations obtained every 4 weeks from Week 7 to Week 51 ranged from 7.1 \(\mu g/mL\) to 10.3 \(\mu g/mL\).

AUCd15, area under the curve from time zero to the end of doing interval after the first infusion; AUCtau, area under the curve from time zero to the last measurable concentration after multiple doses at steady state; Cmax, maximum serum concentration; PK, pharmacokinetics; PD, pharmacodynamics; SD, standard deviation; Tmax, median time to reach maximum concentration; T1/2, mean apparent elimination half-life. *Mean (SD); **Pre-dose crizanlizumab concentrations were collected in participants of Parts A and B in Group 1 (n=50) while all other PK/PD analysis were performed in participants of Part A in Group 1 (n=11).
Crizanlizumab treatment achieved complete and sustained inhibition of P-selectin sustained throughout the 4-week dosing interval.

At steady state

Linear view

Post-dose P-selectin inhibition (n=11)

After first dose (Single infusion)
- AUCd15: 33,700 (2440) h × %*
- P-selectin inhibition‡: 98.7% to 100%

After multiple doses (Steady state)
- AUCtau: 66,700 (9560) h × %*
- P-selectin inhibition‡: 88.6% to 97.6%

Mean pre-dose§ P-selectin inhibition ranged from 85.4% to 99.3% from Week 3 up to Week 51

AUCd15, area under the curve from time zero to the last measurable concentration after the first infusion; AUCtau, area under the curve from time zero to the last measurable concentration after multiple doses at steady state; PK, pharmacokinetics, PD, pharmacodynamics; SD, standard deviation.

*Mean (SD); ‡Mean; §Pre-dose P-selectin inhibition data were collected in participants of Parts A and B in Group 1 (n=47) while all other PK/PD analysis were performed in participants of Part A in Group 1 (n=11).
Crizanlizumab treatment led to a reduction in VOCs and hospital/ER visits

8 (16%) patients did not experience a VOC leading to a healthcare visit during the median 106 weeks of crizanlizumab treatment

VOCs leading to healthcare visit

- Baseline Median annualized rate of VOCs: 3.00 (Q1, Q3: 1.0, 5.0)
- On crizanlizumab treatment Median annualized rate of VOCs: 2.21 (Q1, Q3: 0.55, 4.39)

VOC-related hospitalizations and ER visits

- Baseline Median annualized rate of hospitalizations/ER visits: 4.00 (Q1, Q3: 2.0, 6.0)
- On crizanlizumab treatment Median annualized rate of hospitalizations/ER visits: 0.98 (Q1, Q3: 0, 3.4)

ER, emergency room; Q1, first quartile, Q3, third quartile; VOC, vaso-occlusive crisis.
Crizanlizumab treatment led to a notable reduction in VOCs in patients with no HU use and ≥5 VOCs

VOCs leading to healthcare visit by HU use at study entry

- **No HU use (n=6)**
 - Baseline: 2.00 (Q1, Q3: 1.0, 3.0)
 - On crizanlizumab treatment: 0.73 (Q1, Q3: 0, 1.27)
 - Median absolute reduction from baseline: −0.62 (Q1, Q3: −3, −0.02)

- **HU use (n=44)**
 - Baseline: 3.00 (Q1, Q3: 1.5, 5.0)
 - On crizanlizumab treatment: 2.89 (Q1, Q3: 0.97, 4.4)
 - Median absolute reduction from baseline: −1 (Q1, Q3: −2.77, 0.67)

VOCs leading to healthcare visit by VOC frequency at study entry

- **<5 VOCs (n=34)**
 - Baseline: 2.00 (Q1, Q3: 1.0, 3.0)
 - On crizanlizumab treatment: 0.98 (Q1, Q3: 0.49, 2.95)
 - Median absolute reduction from baseline: −2.8 (Q1, Q3: −5.31, −0.71)

- **≥5 VOCs (n=16)**
 - Baseline: 8.00 (Q1, Q3: 5, 9.5)
 - On crizanlizumab treatment: 4.28 (Q1, Q3: 3.42, 7.4)
 - Median absolute reduction from baseline: −3.8 (Q1, Q3: −5.31, −0.71)

Q1, first quartile, Q3, third quartile; VOC, vaso-occlusive crisis.
Conclusions

• Serum crizanlizumab concentrations rose to maximum levels shortly after infusion and achieved near complete and sustained ex vivo P-selectin inhibition.

• Stable pre-dose concentrations were observed throughout the study, with a lack of accumulation.

• This 2-year analysis of SOLACE-kids Group 1 shows that crizanlizumab 5.0 mg/kg with or without HU is safe and well tolerated in patients with SCD aged 12 to <18 years, consistent with the established safety profile in adult patients from the SUSTAIN study.¹ No new safety signals were identified.

• Crizanlizumab 5.0 mg/kg treatment led to a clinically relevant reduction in the median annualized rate of VOCs leading to a healthcare visit compared with baseline.

• The SOLACE-kids study is ongoing, with dose confirmation currently being performed for Group 2 patients (aged 6 to <12 years). Group 1 of SOLACE-kids has completed recruitment.
Acknowledgments

• This study was sponsored by Novartis Pharmaceuticals Corporation. We thank Pranitha Manchanapalli, PharmD, from Novartis Healthcare Private Limited, and medical writing support funded by Novartis Pharma AG in accordance with Good Publication Practice guidelines.
EMA position on crizanlizumab

Response to unsolicited queries

• Currently, all ongoing studies are continuing as per protocol
• No new patients will be treated with crizanlizumab in the European Union
• For patients currently on crizanlizumab, healthcare professionals should discuss alternative treatment options with them

For additional queries, please contact a Novartis representative at the exhibition booth in Hall 3.1, Level 1