Upregulation of Immune Response Biomarkers by Ribociclib Plus Endocrine Therapy in Paired Tumor Samples From Phase I Studies

Dejan Juric,¹ Chong Ma,² Ralph Tiedt,³ Yoon-Sim Yap,⁴ Joanne Chiu,⁵ Pamela Munster,⁶ Roohi Ismail-Khan,⁷ Laura Garcia-Estevez,⁸ Ingrid A. Mayer,⁹ Carlos Becerra,¹⁰ Nadia Solovieff,¹¹ Agnes Lteif,¹² Faye Su,¹² Yen-Shen Lu¹³

¹Massachusetts General Hospital Cancer Center, Boston, MA; ²Novartis Pharmaceuticals Corporation, Cambridge, MA; ³Oncology Translational Research, Novartis Institutes for BioMedical Research, Basel, Switzerland; ⁴National Cancer Centre Singapore, Singapore City, Singapore; ⁵Queen Mary Hospital, Hong Kong, China; ⁶University of California San Francisco, San Francisco, CA; ⁷H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL; ⁸Hospital de San Chinarro, Madrid, Spain; ⁹Vanderbilt-Ingram Cancer Center, Nashville, TN; ¹⁰Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas, TX; ¹¹Novartis Institutes for BioMedical Research, Cambridge, MA; ¹²Novartis Pharmaceuticals Corporation, East Hanover, NJ; ¹³National Taiwan University Hospital, Taipei, Taiwan

San Antonio Breast Cancer Symposium 2021
December 7–10, 2021
Introduction

- While cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors function as inhibitors of cell cycle progression, preclinical studies have revealed a role for CDK4/6 inhibitors in anticancer immunity through interferon response triggering, increased antigen presentation, and regulatory T-cell suppression.

- To explore the effect of ribociclib (RIB) on immune modulation in a clinical setting, a gene expression analysis was performed using paired biopsies from 2 phase I clinical trials (CLEE011A2115C [A2115C], CLEE011X2107 [X2107]) that studied RIB in combination with endocrine therapy (ET) in hormone receptor–positive (HR+), human epidermal growth factor receptor 2–negative (HER2−) metastatic breast cancer (MBC).
Methods (1 of 3)

- A2115C enrolled Asian patients with HR+/HER2– MBC
 - Cohort A enrolled postmenopausal non-Japanese Asian patients in dose-escalation and -expansion phases. Patients were treated with RIB + letrozole (LET)
 - Cohort B enrolled pre- and postmenopausal Japanese patients in dose-escalation and -expansion phases. Patients were treated with RIB + LET in the dose-escalation phase and with RIB + ET (LET, tamoxifen + goserelin, or fulvestrant) in the dose-expansion phase
 - Prior ET or chemotherapy (CT) for advanced breast cancer (ABC) was not permitted except for patients in cohort B who were treated with RIB + fulvestrant (1 prior ET for ABC allowed)
Methods (2 of 3)

• X2107 enrolled postmenopausal patients with HR+/HER2– MBC
 – Patients were recruited to dose-escalation and -expansion phases
 – In the dose-escalation phase, any number of prior lines of ET was permitted; cytotoxic therapy was limited to 1 prior line for ABC
 – In the dose-expansion phase, prior systemic therapy for ABC was not permitted
 – Patients were treated with RIB + LET (arm 1), alpelisib + LET (arm 2), RIB + alpelisib + LET (arm 3), or RIB + alpelisib + LET (arm 4)
 – Patients in arms 1 and 3 received RIB on a 3 weeks on/1 week off schedule, while those in arm 4 received RIB on a continuous schedule
• Tumor samples were collected at baseline and cycle 1 day 15 (C1D15)
• Best overall response (BOR) was evaluated, and patients were classified as having stable disease (SD), partial response (PR), progressive disease (PD), or unknown (UNK)
Methods (3 of 3)

• The nCounter PanCancer IO 360 Panel (NanoString) was used to quantify expression of 770 genes in paired tumor samples from A2115C and X2107

• Pairwise differential gene expression analysis of individual genes and previously published immune-related gene signatures was conducted\(^2\)
Results (1 of 12)

Patients and BOR

- This analysis included 7 patients (Table 1)
 - 5 patients from A2115C
 - 2 patients from X2107
- BORs were: 1 patient with PR, 2 patients with SD, 2 patients with PD, and UNK for 2 patients

<table>
<thead>
<tr>
<th>Study</th>
<th>Combination and Dose</th>
<th>Cohort/Arm</th>
<th>BOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2115C</td>
<td>RIB 600 mg + LET 2.5 mg<sup>a</sup></td>
<td>A</td>
<td>SD</td>
</tr>
<tr>
<td>A2115C</td>
<td>RIB 600 mg + LET 2.5 mg<sup>a</sup></td>
<td>A</td>
<td>PD</td>
</tr>
<tr>
<td>A2115C</td>
<td>RIB 300 mg + LET 2.5 mg<sup>a</sup></td>
<td>B</td>
<td>SD</td>
</tr>
<tr>
<td>A2115C</td>
<td>RIB 300 mg + TAM 20 mg<sup>a</sup></td>
<td>B</td>
<td>UNK</td>
</tr>
<tr>
<td>A2115C</td>
<td>RIB 300 mg + TAM 20 mg<sup>a</sup></td>
<td>B</td>
<td>UNK</td>
</tr>
<tr>
<td>X2107</td>
<td>RIB 600 mg + LET 2.5 mg</td>
<td>1</td>
<td>PD</td>
</tr>
<tr>
<td>X2107</td>
<td>RIB 600 mg + LET 2.5 mg</td>
<td>1</td>
<td>PR</td>
</tr>
</tbody>
</table>

^aDose-expansion phase.
BOR, best overall response; LET, letrozole; PD, progressive disease; PR, partial response; RIB, ribociclib; SD, stable disease; TAM, tamoxifen; UNK, unknown.

Table 1. Patients included in this analysis

2021 SABCS Immune Response Biomarkers Upregulation by RIB+ET Phase I Study | Dec 2021
Results (2 of 12)

Gene expression profile by BOR

Pairwise differential gene expression at baseline and C1D15 by BOR is shown in Figure 1

Figure 1. Pairwise differential gene expression profile

Each pixel represents the log2 ratio of differential gene expression between C1D15 and baseline.

BS, baseline; BOR, best overall response; C1D15, cycle 1 day 15; PD, progressive disease; PR, partial response; SD, stable disease; UNK, unknown.
Results (3 of 12)

Significant downregulation of proliferation gene signature with RIB + ET

• Expression of a gene signature related to proliferation was suppressed with RIB + ET (Figure 2A)
 – Expression decreased from baseline to C1D15 in patients who had a clinical benefit with RIB + ET (Figure 2B)

• A similar trend was observed for individual genes within the proliferation gene signature (Figure 2C)
Results (4 of 12)

Figure 2. Proliferation gene signature significantly downregulated with RIB + ET (1 of 2)

A. Gene signature associated with proliferation

B. Expression of gene signature by clinical benefit

FDR = 1.65e-08

Each pixel represents the log2 ratio of differential gene expression between C1D15 and baseline.

BS, baseline; BOR, best overall response; C1D15, cycle 1 day 15; CCNB1, cyclin B1; ET, endocrine therapy; FANCA, FA complementation group A; FDR, false discovery rate; MKI67, marker of proliferation Ki-67; MYC, MYC proto-oncogene; PD, progressive disease; PR, partial response; RAD50, double-strand break repair; RIB, ribociclib; RRM2, ribonucleotide reductase, regulatory subunit M2; SD, stable disease; TYMS, thymidylate synthetase; UNK, unknown.
Results (5 of 12)

Figure 2. Proliferation gene signature significantly downregulated with RIB + ET (2 of 2)

C. Expression of genes within proliferation signature by clinical benefit

C1D15, cycle 1 day 15; CCNB1, cyclin B1; ET, endocrine therapy; FANCA, FA complementation group A; MKI67, marker of proliferation Ki-67; MYC, MYC proto-oncogene; RAD50, double-strand break repair; RIB, ribociclib; RRM2, ribonucleotide reductase, regulatory subunit M2; TYMS, thymidylate synthetase; UNK, unknown.
Results (6 of 12)

Significant upregulation of T-cell inflammation gene signature with RIB + ET

- RIB + ET increased expression of a gene signature associated with immune response and indicative of a T-cell–inflamed microenvironment (Figure 3A)
 - Two of 3 patients who experienced a clinical benefit with RIB + ET had an increase in expression from baseline to C1D15 (Figure 3B)
 - Two patients who experienced no clinical benefit with RIB + ET had decreased expression from baseline to C1D15 (Figure 3B)

- A similar trend was observed for individual genes within the T-cell–inflamed gene signature (Figure 3C)

C1D15, cycle 1 day 15; ET, endocrine therapy; RIB, ribociclib.
Results (7 of 12)

Figure 3. T-cell inflammation gene signature significantly upregulated with RIB + ET (1 of 2)

A. Gene signature associated with T-cell–inflamed microenvironment

B. Expression of gene signature by clinical benefit

FDR = 9.43e-03

Each pixel represents the log2 ratio of differential gene expression between C1D15 and baseline

BS, baseline; BOR, best overall response; C1D15, cycle 1 day 15; CCL5, C-C motif chemokine ligand 5; CD3D, CD3d molecule; CXCL10, C-X-C motif chemokine ligand 10; ET, endocrine therapy; FDR, false discovery rate; HLA-DRA, major histocompatibility complex, class II, DR alpha; HLA-E, major histocompatibility complex, class I, E; IL2RG, interleukin 2 receptor subunit gamma; NKG7, natural killer cell granule protein 7; PD, progressive disease; PR, partial response; RIB, ribociclib; SD, stable disease; STAT1, signal transducer and activator of transcription 1; UNK, unknown.
Results (8 of 12)

Figure 3. T-cell inflammation gene signature significantly upregulated with RIB + ET (2 of 2)

C. Expression of genes within proliferation signature by clinical benefit

C1D15, cycle 1 day 15; CCL5, C-C motif chemokine ligand 5; CD3D, CD3d molecule; CXCL10, C-X-C motif chemokine ligand 10; ET, endocrine therapy; HLA-DRA, major histocompatibility complex, class II, DR alpha; HLA-E, major histocompatibility complex, class I, E; IL2RG, interleukin 2 receptor subunit gamma; NKG7, natural killer cell granule protein 7; RIB, ribociclib; STAT1, signal transducer and activator of transcription 1; UNK, unknown.
Results (9 of 12)

Expression of proliferation, cell cycle regulation, T-cell marker, and immune checkpoint genes

- Lower expression of BRCA2, CENPF, BIRC5, CCND1, CKD2, CDKN1A, and DNMT1 was observed with RIB + ET (Figure 4)
- Expression of LAG3 and HAVCR2 increased, while CD4 expression remained similar with RIB + ET (Figure 5)
Results (10 of 12)

Figure 4. Expression of genes associated with proliferation and cell cycle regulation by clinical benefit

BIRC5, baculoviral IAP repeat containing 5; BRCA2, BRCA2 DNA repair associated; CCND1, cyclin D1; C1D15, cycle 1 day 15, CDK2, cyclin-dependent kinase 2; CDKN1A, cyclin-dependent kinase inhibitor 1A; CENPF, centromere protein F; DNMT1, DNA methyltransferase 1; UNK, unknown.
Figure 5. Expression of T-cell marker and immune checkpoint genes by clinical benefit

C1D15, cycle 1 day 15; CD4, CD4 molecule; HAVCR2, hepatitis A virus cellular receptor 2; LAG3, lymphocyte activating 3; UNK, unknown.
Results (12 of 12)

Limitations

• The sample size used in this analysis was small, and thus is considered hypothesis-generating and warrants further investigation

• Bulk RNA from tumor biopsies was used in this analysis; consequently, we could not distinguish whether changes in immune gene signatures reflected increased infiltration by immune cells or endogenous interferon response in cancer cells
 – The interferon response could be triggered by the observed suppression of DNMT1, which promotes T-cell–mediated immunity by increasing antigen presentation and chemokine production in cancer cells

DNMT1, DNA methyltransferase 1.
Conclusions

• Gene expression analysis was performed on patients from 2 phase I clinical trials of RIB + ET in MBC using paired biopsies from baseline and C1D15
 – Cell cycle and cell proliferation markers were robustly suppressed by RIB + ET, indicating on-target pharmacodynamic suppression by a CDK4/6 inhibitor
 – RIB + ET increased expression of immune-related genes, which occurred preferentially in patients who experienced favorable clinical outcomes

• This analysis is considered hypothesis generating and suggests that an immunomodulatory effect may contribute to the survival outcomes and carryover effects reported for the 3 phase III MONALEESA clinical trials; however, the sample size was small and further investigation is needed

• To the best of our knowledge, this is the first report of immune biomarker activation by a CDK4/6 inhibitor in the treatment of patients with HR+/HER2– MBC in clinical trials

C1D15, cycle 1 day 15; CDK4/6, cyclin-dependent kinase 4/6; ET, endocrine therapy; HER2–, human epidermal growth factor receptor 2-negative; HR+, hormone receptor-positive; MBC, metastatic breast cancer; RIB, ribociclib.
References

Acknowledgements

• The authors thank the patients enrolled in these studies and their families as well as the study investigators.
• Medical editorial assistance was provided by MediTech Media, Ltd, and was funded by Novartis Pharmaceuticals Corporation.
• The authors had final responsibility for the poster.
Disclosures

• D Juric reports personal fees from scientific advisory board participation from Novartis, Genentech, Eisai, Ipsen, and EMD Serono.
• C Ma reports employment and stock ownership from Novartis.
• R Tiedt reports employment and stock ownership from Novartis.
• Y-S Yap reports personal fees and nonfinancial support from Novartis, Pfizer, Lilly, AstraZeneca, Eisai, and Roche; and personal fees from MSD and Inivata.
• J Chiu has nothing to disclose.
• P Munster has nothing to disclose.
• R Ismail-Khan has nothing to disclose.
• L Garcia-Estevez has nothing to disclose.
• IA Mayer reports grants for research support and personal fees for advisory boards from Pfizer and Genentech; and personal fees for advisory boards from Novartis, Lilly, Puma, AbbVie, Immunomedics, Macrogenerics, Seattle Genetics, AstraZeneca, GSK, and Cyclacel.
• C Becerra has nothing to disclose.
• N Solovieff reports employment and stock ownership from Novartis.
• A Lteif reports employment and stock ownership from Novartis.
• F Su reports employment and stock ownership from Novartis.
• Y-S Lu reports clinical trial study fees from Novartis; grants from Novartis, Roche, MSD, and Pfizer; and personal fees from Novartis, Pfizer, Boehringer Ingelheim, and Eisai.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from SABCS® and the author of this poster.